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THEORY OF  THE TWO-SUBLAlllCE HEISENBERG  ANTIFERROMAGNET 

by  Edwin G. Wintucky  and  Larry Flax 

Lewis Research  Center 

SUMMARY 

Thermodynamic  properties of the  two-sublattice  anisotropic  Heisenberg  antiferro- 
magnet a r e  calculated by the  Green  function method in  the  random-phase  (Tyablikov)  and 
Callen  approximations  for  spin 1/2. Analytic  expressions for the  sublattice  magneti- 
zation  and  internal  energy a r e  obtained which a r e  valid  over  the whole temperature  range 
up to  the N6el temperature  for  the  body-centered  cubic  lattice. 

INTRODUCTION 

Antiferromagnetism,  like  ferromagnetism, is a cooperative phenomenon  with an 
ordered state below a well-defined critical  temperature. For the  antiferromagnet, how- 
ever,  the  exchange  energy is negative, and  neighboring  spins  tend to  aline  antiparallel. 

The  simplest and most often used  model  for  the  antiferromagnet is the  two-sublattice 
model  wherein  the  lattice of magnetic  atoms is subdivided  into two equivalent  interpene- 
trating  sublattices. If only nearest-neighbor  interactions are  considered,  the  spins on 
one sublattice  interact only with the  nearest  spins on the  adjacent  sublattice.  A  negative 
exchange  interaction  energy results in the two sublattices being spontaneously  magnetized 
in opposite  directions.  This is the  model  originally  proposed by N6el and has  been much 
used in subsequent  theoretical  studies of the  antiferromagnet. At  absolute  zero  the  spins 
on each  sublattice are completely  alined  antiparallel, and with increasing  temperature 
the  spontaneous  magnetitization of each  sublattice  decreases  and  finally  disappears,  in 
zero  applied  field, at  a critical  temperature  called  the N6el temperature.  Because of 
the  equivalence of the  two sublattices,  the  net  magnetization is zero.  The  two-sublattice 
model, which is considered  in  this  report, is compatible only with simple  cubic  and 
body-centered  cubic  crystal  structures.  More  complicated  models  must be used for 
antiferromagnetic  materials with the  face-centered  cubic or other  crystal  structures. 
Further  discussion of the  two-sublattice  and  other  models, as well as the  experimental 



properties of antiferromagnets,  can  be found in  the books  on  magnetism by Morrish 
(ref. 1) and  Smart  (ref. 2). 

The  theory of antiferromagnetism  has  been much investigated  in  recent years. The 
Green  function  technique is now well  established as one of the  most  useful  statistical 
methods  in  the  theory of magnetism  and  has  been  applied many times  already  to  the  study 
of antiferromagnetism (ref. 3 and  references  cited  therein).  Earlier  methods,  espe- 
cially  the  molecular  field  theory, are  discussed in detail  in  references 1 and 2. A  use- 
ful  feature of the  Green  function method is its applicability  over  the whole temperature 
range.  Calculations of thermodynamic  properties  using  Green  functions  have  been found 
to  be  in good agreement with the  results of noninteracting  spin wave approximations at 
low temperatures and with the  results of other  statistical  methods  near  the N6el tem- 
perature  (ref. 3) .  

In this  report  the  Green function  technique is applied to  the  anisotropic  Heisenberg 
exchange  model of a two-sublattice  antiferromagnet  to  obtain  the  correlations  between 
spins,  from which the thermodynamic  properties  can be calculated. 

The  Heisenberg  model is considered  reasonably  valid  for  insulators  and  semicon- 
ductors.  The  sublattice  magnetization  and  other  thermodynamic  quantities involve com- 
plicated  lattice  sums  which,  generally,  have  been  evaluated by means of ser ies  expan- 
sions at the  high-  and  low-temperature  limits. In a few cases  numerical  calculations 
have  been  made at a limited  number of intermediate  points  (ref. 3) .  Flax and  Raich 
have  developed a method for  evaluating  the  lattice  sums  and  successfully  applied it to  the 
ferromagnet  to  obtain  analytic  expressions  for  the  spontaneous  magnetization  valid  over 
the whole temperature  range  (refs. 4 to 6).  In this  report,  their method is applied  to 
the  antiferromagnet with spin 1/2 to obtain  anaIytic  expressions  for  the  sublattice  mag- 
netization  and  internal  energy  for  the  body-centered  cubic  (bcc)  structure.  The  calcula- 
tions a r e  made  for  two  Green  function decoupling schemes,  the  random-phase  approxi- 
mation  (RPA), which is the  Tyablikov  approximation,  (ref. 7) ,  and  the  Callen  approxi- 
mation.  The  random-phase  approximation is justifiable at low temperatures,  where  the 
spins  are  nearly  completely  alined and fluctuations a r e  indeed small. However,  near  the 
critical point,  fluctuations  in  Sz  become  significant,  and  the RPA gives  an  overestimate 
of the  transition  temperature.  The  Callen  approximation  takes  these  fluctuations  into 
account  and,  for  spin  greater  than 1/2, gives  better  results  near  the  critical  point.  The 
N6el temperatures are also  calculated and  compared with previous  results. 

GREEN FUNCTION  METHOD 

As  stated  previously,  the  model  used  in  the  present  study is a cubic,  two-sublattice 
anisotropic  Heisenberg  antiferromagnet with nearest-neighbor  interactions.  The 
Hamiltonian is 

2 



L 

where J is the  exchange  energy, Sz and Sf are  spin  operators,  and cy2 and 
pm refer  to  lattice sites 2 and m  in  sublattices cy and p, respectively. Here 
a, p = 1,2 with N/2 sites in each  sublattice; q is an anisotropy  factor  where q = 0 
corresponds  to  the  Ising  model  and 9 = 1 to  the  isotropic  Heisenberg  model.  In  the 
Green function  method,  the  sublattice  magnetization (Si) and  internal  energy  (H) are 
calculated  from  correlation  functions involving pairs of spin  operators,  for  example, 
(SimSLl ) . For a general  description of the double-time  temperature  dependent  Green 
function  method, see  Zubarev (ref. 8 and references  cited  therein). (Symbols a r e  de- 
fined  in appendix A .  ) 

The  equation of motion  in the  energy (E) representation  for  the  Green  function 

pm 

The  commutators  for  spin  operators 

and 

where 6 and 6l are  Kronecker  deltas,  are used to  evaluate HI. The  equa- 
OB 

tion of motion is then 



Equation (4) represents  an infinite  hierarchy of coupled  equations  since  each  Green 
function on the  right side is of higher  order  and  satisfies a similar equation of motion. 
To solve  this  system of coupled  equations  some  decoupling  approximation  must  be  made 
to  limit  the  number of equations. We treat the two  decoupling schemes  most commonly 
used in the  theory of ferro- and  antiferromagnetism,  the  random-phase  and  Callen  ap- 
proximations. 

Decoupling the equations of motion  enables one to solve  for  the  Green  function  in 
te rms  of the  energy  and  excitation  energy  spectrum.  The  corresponding  correlation 
functions are related  to  the  Green  functions by the  following  equation: 

where A and  B are the  appropriate  spin  operators, t and t' are times, p = l /kT, 
k is Boltzmann's  constant,  and  T is absolute  temperature.  Thermodynamic  quantities 
of interest,  for  example,  sublattice  magnetization  and  internal  energy, a r e  obtained 
from  these  correlation  functions. 

SUBLATTICE MAGNETIZATION 

Random-Phase  Approximation 

In  the  RPA,  the  fluctuations in Sz are ignored  and  the  operator is replaced by its 
average  value.  Then 
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The  equation of motion  becomes 

where 

Assuming  translational  invariance of 
ciprocal  lattice.  Let 

the  direct  lattice, we Fourier  transform  to  the  re- 

where  k is a vector in the  reciprocal  lattice, and Ral is a vector  in  the  direct  lattice 
for  lattice  site Z in sublattice a. Furthermore, we make  the  nearest-neighbor ap- 
proximation in which the  spins on sublattice 1 interact only with spins on sublattice 2. 
Let 

denote a nearest-neighbor  vector.  Then 

JaZ, pg - J 6 a ,  p+16g,Z*A 
- 



Therefore, 

where J(0) = Jz ,  

A 

is the structure  factor,  and z is the  number of nearest  neighbors.  The  equation of mo- 
tion  becomes 

or 

where K1 = 2J(O) and K2 = 2J(0)77. For S = 1/2 the  sublattice  magnetization 
- 

written as m = (33 = -+$. 
can  be 

Substitution  into  the  equation of motion  yields  two pairs of simultaneous  linear 
equations. One pair  gives  the  Green  functions 
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All = - m E + m K 1  

E2 -E: 

and 

where 

is the  excitation  energy  spectrum.  The  Green  functions A22 and A12 are similarly 
obtained but a r e  not needed  in  the  calculation of the thermodynamic  quantities. 

The  corresponding  correlation  functions are 

and 

-m2K2y( k )  

Ek 
45&) = 

PEk coth - 
2 

Transforming  back  to  spin  operators, we get 

and 



k 

The  lattice sums appearing in equations (22) and  (23) are taken  over  the first Brillouin 
zone  and  can  be  evaluated  analytically by the  Flax-Raich  method.  The results are ex- 
pressions  for  the  correlation  functions which are valid  over  the whole temperature  range 
up to  the N6el temperature. 

The series expansion 

coth(nt) = - + - 
n t  71 R2 + t2  

R= 1 

is used  where n t  = pEk/2. For a cubic  two-sublattice  model 

k 

The  correlation  functions  can  then  be  written as the  sums of integrals: 

and 

where  the  integrals 11,  12, and 112 are given  in  appendix B by equations (Bl) to  (B4). 
When evaluated  for  the bcc lattice, the integrals  become 

I - ~ K ( K )  
l-Q[" l2  
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where 

'2-  - -Lk+$)+  Q (1+$)cothQ+-csch 5 16 2Q 2 Q 

1 1 2 = ~ [ - ~ ( 1 + ~ )  + (I+&) 12 8 c o t h Q + -  2752Q 128 csch' Q 1 

Q = -  m 
7 

and K(K) is a complete  elliptic  integral of the first kind. For spin S = 1/2 the sub- 
lattice  magnetization is 

Then 

1 m =  (36) 
2(11 + 12) 

The RPA sublattice  magnetization m is plotted a s  a function of reduced  temperature 
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T = kT/J(O) in figure 1 for 7 = 0, 0.5, and 1. In the RPA,  the  correlation  function 

(3;s;) is not  needed in the calculation of the  sublattice  magnetization but is used later 

for the internal  energy. 

Callen Approximation 

The  Callen  approximation is a symmetric decoupling  scheme which attempts  to take 
into  account the fluctuations of Sz around its average  value  and was first proposed  for 
the ferromagnet (ref. 9) and  subsequently  applied to the antiferromagnet (refs. 3 and 10). 
For the antiferromagnet, 

In the case of the ferromagnet,  the  empirical  factor a is chosen  to  be ( S ')/S2. For 

the  antiferromagnet, two choices  for a are possible  because of the existence of the two 

sublattices,  namely (ssJb2 and -@:ab2. In the absence of an  applied field both 

choices  lead  to  identical  results. In  the  present  calculation, we will use 

After  decoupling and Fourier  transforming  to  reciprocal  space, the equation of motion is 

r 1 
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Applying  the same  nearest-neighbor  approximation  used  in  the RPA calculation  gives 

r 1 

where (ref. 6) 

k' k' 

By symmetry, 

Let 

K1 = 2J(0)(1 - 2vF) 

K2 = 2J(O)(v - 2F) 

where 

k' 

and S = 1/2. Then 
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The  equation of motion  for  the  Callen  approximation  has  the  same  general  form as for 
the RPA and  leads  to a similar set of coupled  equations  for  the  Green  functions.  The 
correlation  functions are given by equations (20) and (21). 

The  difference is that  for  the  Callen  approximation K1 and K2 are defined by 

equations (42) and (43), respectively.  The  second  correlation  function SiS2 is iden- 

tical  to the sum F which appears  in K1 and K2 and is given by equation (47). In the 
same way as for  the RPA, the  correlation  functions  in  the  Callen  approximation  can  be 
written as the sums of integrals as in  equations (25) and (26). The  integrals  have the 
same  form  for both the  RPA and  Callen  approximations  and are given  in  appendix B by 
equations (Bl) to (B4). The  results  are  given by equations (27) to (30) with K1 and K2 
defined by equations (41) and (42). Also, 

( 4  

where 

Q = (1 - 27F) 
r 

and r is defined by equation (31). The  sublattice  magnetization  m  for the Callen  ap- 
proximation is plotted against r in figure 2 for 7 = 0,  0.5, and 1. A  comparison with 
previous  theoretical  calculations (ref. 3) shows  that  for  spin 1/2 the RPA gives a better 
approximation of the sublattice  magnetization. 

INTERNAL  ENERGY 

The  internal  energy is a  useful  thermodynamic  function  for the calculation of many 
other  properties.  For a system of interacting  spins,  differentiation with respect  to  tem- 
perature  gives the  specific  heat  due  to  spin  disorder.  The  entropy  and  other  properties 
may then  be  calculated.  In  previous  studies of the  antiferromagnet,  the  internal  energy 
has been  derived only for  very low temperatures  or  for  the  paramagnetic state above the 
N6el temperature. In this  section  an  exact  expression is derived  for  the  internal  energy 
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of a two-sublattice  anisotropic  Heisenberg  antiferromagnet with spin S = 1/2. ' This ex- 
pression  for  the  internal  energy is then  evaluated in the  random-phase  and  Callen  ap- 
proximations  for  the  bcc  lattice by means of the same method  used for evaluating  the 
lattice sums in calculating  the  magnetization.  The result is an  analytic  expression  for 
the  internal  energy  valid  over  the whole temperature  range up to  the N6el temperature. 
The  calculation is made for  zero  applied  magnetic  field,  but  the method is equally  useful 
for  nonzero  fields. 

The  internal  energy U is obtained from  the  average  value of the  interacting  spin 
Hamiltonian: 

The correlation function F = SiS2  has  already been  calculated,  and ( +) 

Jlf,2g(sif%g) = NJ(0)F 

The  term 2 Jlf, 2g(STp&) is calculated  exactly  for  spin 1/2 in  appendix C and is 

f , g 
given by 

n 

f , g 

An exact  expression  for  the  internal  energy of the  two-sublattice  anisotropic  Heisenberg 
antiferromagnet  for  spin 1/2 is then 

u = (H) = -- [ J(o)] Ek coth - NJ(o) m - qF + - + m PEk m2K 

2 2 
k 

where K1 is defined by equation (B5) or  (B6). The  sum Ek coth(pEk/2)  can be T 
13 



evaluated with the 
ing from a sum  to 

where I2 and II, 

help of the  integrals of appendix B. Using equation (24) and  convert- 
integrals  give 

are given by equations (B2) and (B4), respectively, and K2 is de- 
fined by equation 7B5) or (B6). Substituting 

1 
2m 

I2 = - - I1 

and 

into  equation  (51)  and  simplifying result  in 

pEk mK1 mK2F 
2 4J(O) 2J(O) 

Ek Coth - - - + - - 

k 

Defining  a reduced  energy by u = U/NJ(O) gives 

Specifically, 
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Specifically, 

and 

u =: -m + qF - 2mF2  (Callen) 2 

The quantity  u is plotted  against  the  reduced  temperature 7 in  figures  3 and 4 for  the 
RPA and Callen  approximations,  respectively,  for q = 0, 0.5,  and 1. 

For  both  decoupling  approximations  and q = 0, u = 0 at TC.  This  confirms  the 
persistence of some  order  even  above  TC due to  the  transverse coupling of spins.  The 
intersections of the  curves  for  the RPA appear  to  result  primarily  from  the  lesser weight 
given to the transverse coupling of spins.  For  the  zero-field  case it is not possible  to 
determine  from  u  alone which  decoupling  scheme  gives a more  accurate  description of 
the  internal  energy. A calculation  and  comparison of the  specific  heats is more  suitable 
for  this  purpose. 

Values of u at the N6el temperature  are  presented  in  table I.  The  ground-state 
energy  u is the  value of the  internal  energy  at 0 K. These  values  are given in  table II, 
together with the  values  for  the  sublattice  magnetization at 0 K .  The  ground-state  energy 
for  the  isotropic  case ( q  = 1) in  the  Callen  approximation agrees exactly with the  value of 
-0.293  obtained by Lee  and  Liu.  They  use a somewhat  different and more  complicated 

0 

method to  evaluate  the  longitudinal  correlation  function which appears  in ( H )  

(ref. 3). 

N ~ E L  TEMPERATURE 
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where A = 1 for the  random  phase  and 1 - 2qF for  the  Callen  approximations. It is 
easily shown that 

lim (Q'A) coth (&'A) = 1 
Q'A-O 

lim (Q'A) csch (Q'A) = 1 
Q'A-O J 

Then 

2 

The  calculation 7N for  the  Callen  approximation  also  requires 

FN = lim 
m 4  

(59) 

Then  equations (58) and (59) a r e  used  to  determine TN. 

The  calculated  values of T~ for 77 = 0, 0.5,  and 1 are presented  in  table III. For 
77 = 1, both the RPA and  the  Callen N6el temperature  values agree exactly with those ob- 
tained  previously  for  the  antserrornagnet (refs. 3 and 11). The  value of T~ = 0 .5  for 
q = 0 is the well-known value  for  the  Ising  model. It is noted that  the  reduced N6el tem- 
peratures  for  the  antiferromagnet  are  identical  to  the  reduced  Curie  temperatures  for  the 
ferromagnet  for both the  random-phase  and  Callen  approximations. 

CONCLUDING REMARKS 

Our results  for the  sublattice  magnetization  and  the N6el temperatures  agree with 
results obtained  previously  from high-  and low-temperature  expansions.  This  suggests 
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that  the method for  evaluating  the  lattice sums which was  successfully  applied  to  the 
study of the  anisotropic  Heisenberg  ferromagnet  can  be  applied with equal  validity to  the 
two-sublattice  anisotropic  Heisenberg  antiferromagnet.  The result is an  analytic  ex- 
pression  for  the  sublattice  magnetization that depends on the  decoupling  scheme.  This 
expression is valid  over  the whole temperature  range. 

For  spin 1/2, an  exact  expression  for  the  internal  energy due to  the  ordering of 
spins  (eq. (51)) has  been  derived  for  the  two-sublattice  antiferromagnet  and is indepen- 
dent of any  decoupling scheme  or  approximation.  This  expression  was  then  evaluated 
for  the  bcc  lattice  using  the  Flax-Raich  method,  for both the RPA and Callen  decoupling 
schemes. The result is an  analytic  expression  for  the  internal  energy  valid  over  the 
whole temperature  range. In the  Callen  approximation,  the  value of the  ground-state 
energy  for  the  isotropic  model (77 = 1) agrees  exactly with the  value  obtained  previously , 

from a low-temperature  expansion.  The  internal  energy in the  presence of an  applied 
field  can be obtained by essentially  the  same  methods.  The  analytic  expression  for  the 
internal  energy  can  then  be  used  to  calculate  the  specific  heat  and many other  thermody- 
namic  quantities and  hence is a starting point for  formulating  the  thermodynamics of the 
two-sublattice  antiferromagnet. 

Lewis Research  Center, 
National  Aeronautics and Space  Administration, 

Cleveland,  Ohio,  July 8, 1971, 
129-02. 
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APPENDIX A 

SYMBOLS 

excitation  energy 

Hamiltonian 

exchange  energy 

complete  elliptic  integral of first kind 

Boltzmann's  constant 

sublattice  magnetization 

total  number of lattice  sites 

spin  operators 

temperature 

internal  energy 

l/kT 

structure  factor 

nearest-neighbor  vector 

anisotropy  parameter 

reduced  temperature 

correlation function 

Green  function 
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APPENDIX  B 

EVALUATION OF INTEGRALS FOR BODY-CENTERED CUBIC  LAlllCE 

8 ,  The  method  for  evaluating  the  integrals which appear  in  the  calculations of the  cor- 
relation  functions  in  the  random-phase and Callen  approximations a r e  outlined in this 
appendix.  The  methods are similar  to  those applied to  the  ferromagnet (refs. 4 to 6). 
The  integrals are 

1 2 = y f - J n  a 

R=l  J 

R2 + (27 
R= 1 

dx dy dz 

where 

19 
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K1 = 2J(O) 

K2 = 2775(0) I 
K1 = 25(0)(1 - 2qF) 

(Callen) 
K2 = 25(0)(77 - 2F) 

and 

= m2Kx [l - Z2y2(k)1 

with 5 = K2/K1. For  the bcc lattice,  the  structure  factor is 

y ( k )  = COS X COS y COS z 
4 

Then 

2 ill= (1 - t 2  cos2x  cos  y cos z 

1 I =  1 dx dy dz 

P K 1 ”  
3 2 2 

The  denominator  can be  expanded a s  

n=O 

20 



;where 

Also, 

Therefore, 

m 

The  series  corresponds  to a complete  elliptic  integral of the first kind (ref. 4): 

n=O 

where 

and K~ and K i  are conjugates.  Then 

The  integral 111 can  be  written  in  terms of I1 as 

-_ 

(B.13) 



and is thereby  easily  evaluated.  The  evaluation of I2 proceeds as follows: 

00 

4 I2 = - 
pal 

R= 1 

where 

Then 

B 

dx dy dz 1 
1 -($os2x cos 2 y cos z 2 J  

where 

Using the  same  expansion as in the  evaluation of 11, 

n=O 

= 1 + yy + " ( 9 4  + 

8 r 512 r . . .  

22 



.gives 

Substituting l/r = S /(R + S ), where S = pmK1/2n, gives 2 2 2 2  

m 

27(4s6 1 
eo 

512  (R2 + S2)6 
+ .  . . 1 

R=  1 J 

The  sums  over R a r e  evaluated by the  method of Laplace  transforms (see refs. 4 to 6 
and  references  cited  therein). Sufficiently accurate  results  are obtained by keeping only 
the first few terms in  the sum over n. Specifically,  the sums over R needed to  calcu- 
late I2 and 112 a re  

c 
R= 1 

1 -  _" + - I1 coth ( 7 6 )  

R2 + S2 2S2 2s 

1 (R2 +'S2)' - 

1 + - coth (sS) + - csch (as)  I1 112 2 - - -  
.2s4 4 ~ 3  4S2 

R=l  

Finally, 

2 
coth(IrS)+- ' csch (sS) 2 

BS 16 

The  integral 112 is evaluated  in a similar way. For  the RPA, SS = m/T and 5 = q. For 
the  Callen  approximation, BS = m(l - 2 q F ) / ~  and 5 = (77 - 2F)/(1 - 2qF). 
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APPENDIX C 

EVALUATION OF THE TERM 2 J If, zg 
f, 9 

For spin  1/2,  the  term 2 Jlf , 2 g ( s ~ ~ ~ ~  can be evaluated  exactly.  The  oper - 
f, g 

ator  Sz  can be written as 

1 
1 2  

1 
2 2  

SZ = - - s;s; 

sz = -- - s-s+ 2 2  

Then 

since 

The  correlation  function S;fs$igS;g) can  be  evaluated by using  the  Green  function 

equation of motion  given by equation (2) for  a, p = 1: 

Substituting  equations  (Cl) on the  right side for Sz gives 
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where  A2g2gll, lm (( s- 2g s+ 2g s+ 12; Sim)) is a Green  function of higher  order. 

To simplify  the  calculation,  the  spectral  density p for a Green  function is intro- 
duced.  It is defined in  reference 7 by 

The  corresponding  correlation  functions  are  calculated  from  equation (5). For t = t' 
equation (5) can  be  written a s  

(BA) = / O3 (ePE - 1) -'p(A,  B; E)dE 
-00 

Equation (C4) can  be  written  in  terms of spectral  densities.  Setting 1 = m = f results  in 

X [p(2g2glf If; E) - qp(lflf2g, If; Ed (C 7) 

where 

p(lf, If; E) = lim [.,,, lf(E + ic) - Alf, lf(E - ic)] 
€4 

r 1 

p(2g2glf , If; E) = lim b 2 g 2 g l f 7  If 
E 4  

(E + iE) - AagZglf, lf(E - i.1 
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summing  over f give 

On the  right  side, (s;P;tSlP2> + +  = 0, because  for S = 1/2, (S-)2) = 0 for  any state /) . 
Fourier  transforming  p(lf, If; E) to reciprocal  space  yields 

-c - 
ic) - All(k; E -  ic) 1 

k 

Rearranging  equation (C 10) gives 

Then  from  equations (C2) and  (C12), 



Also, 

and 

NJ(0)F 
2 

The  integral  over E is evaluated by using the  Green function of equation (17)  in the 
spectral  density  pll(k; E). The result is 

1 - 1) Epll(k;E)dE = m Ek coth - - - K1 (C 16) 
-1 + c BEk Nm2 

2 2 
k k 

Substituting  equations  (C14),  (C15),  and (C16) into (C13) gives 
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TABLE I. - REDUCED  INTERNAL  ENERGY  EVALUATED 

AT N ~ E L  TEMPERATURE FOR SPIN 1/2 ANTI- 

FERROMAGNET  WITH  BODY  -CENTERED 

CUBIC  LATTICE 

Anisotropy 
factor, 

0 

. 5  

I l . O  I -. 0706 I -.0706 I 

TABLE II. - REDUCED  INTERNAL  ENERGY  AND  SUBLATTICE  MAGNETIZATION 

EVALUATED  AT  T = 0 K FOR SPIN 1/2 ANTIFERROMAGNET 

WITH  BODY -CENTERED  CUBIC  LATTICE 

Anisotropy 
factor, 

9 

- 

0 

. 5  

1.0 

t .. 

Approximation 
~ ~ 

Random phase Callen 

Sublattice 
magnetization, 

mO 

0.5000 

.4293 

.4706 

Reduced internal 
energy, 

uo = (H)/NJ(O) 

-0.2500 

-. 2584 

-. 2906 
~ 

Sublattice Reduced internal 
magnetization, energy, 

mO ~0 = (H) /NJ(O)  

0.5000 

-. 2934 .4706 

-. 2597 .4907 

-0.2500 



TABLE rn. - REDUCED NEEL TEMPERATURE 

FOR SPIN 1/2, TWO-SUBLATTICE,  ANISO- 

TROPIC HEISENBERG  ANTIFERROMAGNET 

WITH  BODY-CENTERED  CUBIC  LATTICE 

Anisotropy  Approximation 
factor, - 

77 Random phase 

Reduced N6el temperature 

Callen 

0 

.4601 .3589 1 

.49  70 .4830 .5 

0.5000 0.5000 

E 

. ' r  I , I ,  \ \  
I 

0 .1 . 2  . 3  . 4  .5  
Reduced temperature, T = kTIM0) 

Figure 1. - Magnetization as function of reduced 
temperature  for  randan-phase  approximation. 
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0 .1 . 2  . 3  . 4  .5 
Reduced temperature, T = kTIJ(0) 

Figure 2. - Magnetization as function of reduced temperature  for 
Callen approximation. 

""" \ 
-\\A --. 

0 . 1  .2 . 3  . 4  .5 
. Reduced temperature, T =  RTIJ(0) 

Figure 3. - Internal  energy as function of reduced 
temperature  for  randan-phase approximation. 
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0 .1 . 2  . 3  .4 .5 
Reduced  temperature, T = kTIJ(0) 

Figure 4. -Internal energyas  function of reduced 
temperature  for  Callen  approximation. 
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